
Fermi National Accelerator Laboratory 

Software Engineering Methods and Standards 
Used in the Sloan Digital Sky Survey 

D. Petravick, E. Berman, V. Gurbani, T. Nicinski, R. Pordes, 
R. Rechenmacher and G. Sergey 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

R.H. Lupton 

Princeton University Observatory 
Princeton, New Jersey 08544 

April 1995 

Presented at the Fourth International Workshop on Software Engineering and Artificial Intelligence for High 
Energy and Nuclear Physics, Pisa, Italy, April 3-8, 1995 

e Operated by Universities Research Association Inc. under Ccmtract No. DE-ACOZ-76CH03000 with the United States Department of Enetgy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof nor 
any of their employees, makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 



SOFTWARE ENGINEERING METHODS AND STANDARDS 
USED IN THE SLOAN DIGITAL SKY SURVEY * 

DON PETRAVICK, EILEEN BERMAN, VIJAY GURBANI, 
TOM NICINSKI, RUTH PORDES, RON RECHENMACHER, GARY SERGEY 

Computing Diwirion, Fermi National Accelemtor Labomtorq, P.O. Bor 500 
Batavia, Illinoir 60510, United Statea of America 

and 

ROBERT H. LUPTON 
A&ophysica Department, Princeton University Observatory, Peyton Hall, Ivy Lane, 

Princeton, New Jersey 08544, United Statea of America 

Received (April 3, 1995) 
Revised (April 3, 1995) 

We present an integrated science software development environment, code maintenance 
and support system for the Sloan Digital Sky Survey (SDSS) now being actively used 
throughout the collaboration. 

1. Introduction 

The Sloan Digital Sky Survey1 is a collaboration between the Fermi National Accel- 
erator Laboratory, the Institute for Advanced Study, The Japan Promotion Group, 
Johns Hopkins University, Princeton University, The United States Naval Observa- 
tory, the University of Chicago, and the University of Washington. The SDSS will 
produce a five-color imaging survey of l/4 of the sky about the north galactic cap 
and image 108 Stars, lo8 galaxies, and lo5 Quasars. Spectra will be obtained for 
lo6 galaxies and 10’ Quasars as well. The survey will utilize a dedicated 2.5 meter 
telescope at the Apache Point Observatory in New Mexico. Its imaging camera 
will hold 54 Charge-Coupled Devices (CCDS). The SDSS will take five years to 
complete, acquiring well over 12 TB of data. 

Fermilab, as part of its Experimental Astrophysics program, is participating in 
the SDSS, and has major responsibilities for the project’s software and software 
engineering practices. 

*Sponsored by DOE Contract number DE-ACOZ-76CH03000 and the Alfred P. Sloan Foundation. 



2 Software Engineering Methods and Standards 

The goals for the software were: 

a Allow scientists of all the participating institutions to contribute software. 
l Allow institutions to manage large software projects substantially indepen- 

dently. 
l Allow very efficient image processing code. 
l Minimize costs by re-using software where feasible. 
l Identify all software used to produce the survey’s data products (from exe- 

cutables to source). 
l Produce a system portable to POSIX-like systems. 

In contrast with current high energy physics at Fermilab, SDSS had no history, 
legacy software and development practices with which to contend. We had the 
opportunity from the start to develop and impose software methods and standards 
appropriate to distributed development across six sites (including Japan). Our 
emphasis is on a software engineering methodology that pays much attention to the 
support and integration of multiple programming environments. 

Through two years of development and support we have successfully organized 
the development of greater than 200,000 lines of source, and integration of more 
than one million lines before the start of data taking. We continue to improve our 
basic model and add tools in support of the methods. We can now place more 
emphasis on developing tools for quality control and analysis with the knowledge 
that they can be applied across the collaboration software. 

2. Baseline 

In 1992, the survey decided to follow the spirit of the POSIX standards, and to 
incorporate them to the greatest extent feasible. ANSI-C, Extended F77 and C++ 
were chosen as allowed programming languages. 

The survey decided to rely on freely available software, providing three criteria 
were met: 

l The software was reasonably consistent with a POSIX environment. 
l The source code was available and could be managed by the survey. 
l The survey could imagine maintenance and development of this type of code. 

Other technologies were chosen as well: 

l X11, with prejudice against proprietary layers, like Motif. 
l Use of the World-Wide Web’ and HTML for distributed documents. 
l ‘I@ / I4Tfifor document formatting. 
l CVS3 and RCVS4 for source code distribution and code change 

maintenance. 
l Fermilab UPS’ software for management of complied software. 
l tc16 as an interpreter (followed later by Tk as a GUI). 
0 Postscript. 



Software Engineering Methoda and Standards 3 

l Use of an Object-Oriented Database for the survey’s DBMS. 
0 per1 as a scripting language. 

3. Source Code Methods 

The bulk of code written for the survey is in ANSI C. Most computing professionals 
are reasonably fluent in some variant of the C language, but many scientists were 
not fluent programmers, and many senior scientists had legacy code in FORTRAN, 
not C. A major problem for the engineering tools was that people from all levels of 
skill have to produce portable, maintainable code. 

We decided to address this problem governed by the following principles: 

(i) We would insist on strict ANSI C for science code, and insist on using language 
features like prototypes, which increase compile-time checking. 

(ii) Computing professionals would supply framework code that interfaced to the 
exterior environment, and so would deal with byte-swapping, and other inter- 
face issues. 

(iii) Science code must compile without warnings. 
(iv) We would check for other, more subtle rules via Quality Assurance audits. 

From these principles, we constructed just three tools which have provided ef- 
fective control of these problems. 

The first level of control is provided by a makefile driver, sdssmake, which sets 
our standard, picky compiler flags and analyses the standard error output of make. 
It is a survey standard that all compilations use sdssmake, and that no warning lines 
are output to the terminal. Sdssmake sets picky ANSI, optimization and debugging 
flags for all compilers supported by the survey. In particular, we set flags insisting 
on ANSI prototypes, and the maximal amount of checking. The standard error 
from make is passed through a per1 script, filter-warn, which suppresses the specific 
warnings from each compiler which have been determined to be spurious. 

The second level of control is provided by a checking script, quasar, which is 
combined with a source code quality audit for each minor milestone. Quasar is 
a per1 script which analyses code and object archives, looking for violation of our 
more obscure survey coding standards. Examples of the kind of checking that goes 
on are: 

l Flag classic C includes, not supported in ANSI C (e.g ma1loc.h) 
l Inspect object files using nm to see if all defined names obey name discipline 

standards. For example, no one has defined a routine named “select”. 
l Check C source for absence of conditional code, excepting conditionals on 

NDEBUG and use of the preprocessor to comment out large blocks of code. 

A third level of control is just now being implemented. A script called audit is 
used to inventory just what programs and files have been used to build a product. 



4 Software Engineering Methods and Standarda 

Audit is based on the /proc file system. Using /proc, one can trace the execution 
of a process, tracking the system calls. It is possible to track calls to fork(), and 
apply the audit to all processes ultimately invoked by some root process. Using 
/proc, we can inventory the complete context for every exec as well - 

l The file executed 
l The switches it was passed 
l The processes’ environmental variables 
l Any shared libraries the process mapped to 
l Which files the program read 

When we apply audit to make, we can establish that 

l Compilations were done with the proper flags 
l Only supported executables were used to process the source code. 
l Only controlled versions of headers files were used during compilation. 
l Only controlled versions of object files were used by Id. 

4. Distributed Development Environment 

Like high energy physics experiments, the SDSS depends on scientists at partici- 
pating institutions to deliver a considerable amount of software development effort. 
The SDSS software is developed at collaborating institutions, at the observatory, 
and by single participants at miscellaneous locations. 

The requirements on the distributed development system are: 

l Any collaborator can see the source to any of the survey’s code. 
l Write access to source be controlled by its coordinator. 
l Remote developers have a standard survey environment. 
l Documentation be made widely available. 
l The development system be essentially free. 
l The development system be quick to install. 
l The development system not rely on the presence of a fast network. 

The key component of the distributed development system is the CVS/RCVS 
code library. The survey has three distinct master libraries, two at Fermilab and 
one at Princeton. These libraries manage well over one million lines of source code. 

Unlike most source code management schemes, CVS is based on optimistic lock- 
ing and automatic merging of differences. The CVS system permits more than one 
person to work on a source code file at a time. Because the project maintains an 
organization chart identifying a coordinator for each software module unplanned 
collisions do not happen, and planned collisions usually involve minor fixes and 
maintenance. In this case the merging tools work well. 

RCVS’s use of rdist allows us to furnish access to the survey’s code repository 
at no cost to collaborators. We have found that our collaborators would incur 



Software Engineering Method8 and Standarda 5 

unacceptable costs and resist our system if we had chosen to use a file system like 
AFS. 

We can report that 61 distinct computers and 91 distinct users are registered to 
use our source code libraries. The optimistic locking of CVS causes no significant 
problems, and the system fundamentally works. 

We decided to document the system using the World Wide Web (WWW). The 
survey was one of the first users of WWW. It has relied on outside software for 
browsers and infrastructure, like server frameworks. Much of the survey docu- 
mentation is written in HTML, rather than being converted from another format. 
Because it was an early user of HTML, and because HTML is the primary language 
for much of our documentation, we developed, and continue to use several custom 
tools. 

The per1 script htmlalatex converts HTML files to latex, allowing us to build 
hard-copy versions of much of our documentation. The per1 script c2html con- 
verts our template headers in our C language source code to HTML. It is used for 
automated generation of reference documentation. 

The Fermilab UPS system is used to manage the survey’s binaries. We have 
made extensive use of its support for multiple versions of software installed on one 
computer. We have extended it with our own distribution machinery, supplying our 
collaborators with releases of all of our underpinnings. This tool, UPRr is based on 
the rdist utility, like RCVS. 

5. Retained Data and Data Model, Object Oriented DBMS 

In 1993, the survey decided to use an object-oriented DBMS for its persistent data. 
This introduces the C++ language into the survey. We report mixed results, both 
in the use of the database, and the acceptance of the C++ language: 

At a high level, we can report the following: 

l We have found object oriented databases to have good speed, and have found 
that the pain of porting our applications from one of these system to another 
is less than expected. 

l C-Front based C++ compilers are very slow, compared to equivalent ANSI C 
compilers. 

l In 1993, C++ compilers had bugs causing unnecessary conditional compilation 
in otherwise vanilla source code. For example, one compiler would lack a 
signed character type, another lacked the offsetof operator. 

l Object oriented databases, in addition to being licensed software, require pro- 
prietary compilers, making it expensive for collaborators to develop software. 

l There are people who are productive in FORTRAN and C who are not pro- 
ductive in C++. Use of C++ excludes people who would otherwise have a 
satisfactory development role in the survey’s software. It is the human re- 
sources that count. 

l Given a decision to use an object oriented database, one still needs to cope 



6 Software Engineering Methods and Standards 

with the interchange of data outside of the project. This is more true in 
astrophysics than for high energy physics. In astrophysics, these file formats 
are tabular, not object oriented. Therefore, we have encountered a state- 
of-the-art problem - flattening our object oriented data model into tabular 
forms. 

Because of these difficulties, science sensitive code is in ANSI C , with C-like 
data abstractions - structs, not classes. We interface these to C++, and use C++ 
almost solely in conjunction with the object oriented databases, where the speed 
and use of persistent pointers are seen as very advantageous. 

Because we are in a mixed language environment, out data model must control 
not only the C++ classes in the object oriented databases, but also C structs and 
the format details of flat files in interchange format. 

6. Summary 

The SDSS was one of the first major experiments at Fermilab to use UNIX, C and 
C++. The Survey has developed a distributed, UNIX-based development system at 
minimal cost by re-using mostly free software tools. The system has been function- 
ing satisfactorily for two years, and supports more than l,OOO,OOO lines of source. 
We continue to evaluate its effectiveness and to extend it where necessary. The 
system plays an important role in developing the skills of all who contribute soft- 
ware to the survey. We continue to be enthusiastic about object-oriented databases, 
though C++ has failed to be routinely used in science code. 

References 

1. “A Digital Sky Survey of the Northern Galactic Cap”, Proposal, December 20, 1990. 
2. T. J. Berners-Lee, R Caihiau, J. Groff, and B. Pollermann, “World-Wide Web: The 

Information Universe,” Electronic Networking: Research, Applications and Policy, Vol. 
2 No. 1, Spring 1992, (Meckler Publishing, Westport, CT, USA), pp. 52-56. 

3. Per Cederqvist, “Version Management with CVS,” unpublished manual, Signum Sup- 
port AB, March 1993. 

4. Terry Hung, “RCVS: Remote extension of concurrent Versions System,” unpublished 
document, Stanford Linear Accelerator Center. 

5. Fermilab Computing Division, “UPS User’s Guide,” unpublished manual, PN-426, Fer- 
miiab, March 1993. 

6. J. Ousterhout, et. al., “Tel: an Embeddable Command Language,” Proceedings of the 
Winter 1990 USENIX Conference. 

7. V. Gurbani, “Product Distribution Via UPR,” unpublished manual, Fermilab, Decem- 
ber 1993. 


